Received: 2 October 2008,

(www.interscience.wiley.com) DOI 10.1002/poc.1482

Accepted: 16 October 2008,

Reactions of (1-nitroethenyl)sulfonylbenzene, a nitroethene derivative geminally substituted by a second W-group

Peter A. Wade^a*, James K. Murray^a, Alma Pipic^a, Robert J. Arbaugh^a and Amutha Jeyarajasingam^a

Nitroaldol reaction of phenylsulfonylnitromethane with formaldehyde affords a mixture of 2,4-dinitro-2,4-bis(phenylsulfonyl)butan-1-ol and 2,4-dinitro-2,4- bis(phenylsulfonyl)pentane-1,5-diol. Treatment of this mixture with base followed by reacidification affords 1,1'-[(1,3-dinitro-1,3-propanediyl)bis(sulfonyl)]bis(benzene) as a mixture of (R*, R*) and (R^*, S^*) -diastereomers from which the (R^*, S^*) -diastereomer can be obtained pure. The intermediate in the nitroaldol reaction is (1-nitroethenyl)sulfonylbenzene and, if dienes are present, additional products are also obtained. If either (E)-2-methyl-1,3-pentadiene or 1-(1-methylethenyl)cyclohexene are present, typical Diels-Alder adducts are obtained with the major isomers explainable by assuming a transition state in which the nitro group is endo. If furan is present, its formal conjugate addition product, 2-[2-nitro-2-(phenylsulfonyl)ethyl]furan, is formed. If cyclooctatetraene is present, it first dimerizes and then affords isomeric Diels-Alder cycloadducts of the dimer. Semiempirical calculations comparing the LUMO energies of (1-nitroethenyl)sulfonylbenzene to the corresponding trans-1,2 isomer are presented to explain relative reactivity of 1,1- and 1,2-disubstituted dienophiles. Copyright © 2009 John Wiley & Sons, Ltd.

Keywords: Diels-Alder reaction; nitroalkene; nitroaldol; semibullvalene; nitrosulfone

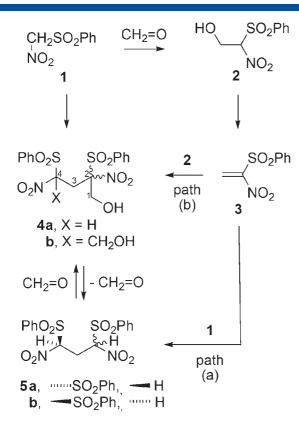
INTRODUCTION

Nitroethene is a useful, reactive dienophile suitable for Diels-Alder reactions^[1] and also a useful Michael acceptor for use in conjugate addition reactions.^[2] It is sufficiently stable for isolation and short-term storage^[3] although not highly amenable to commercialization. Geminal substitution with a second W-group would be expected to enhance the reactivity of nitroethene in Diels-Alder reactions. In accordance, we have shown that (1-nitroethenyl)sulfonylbenzene (3), a nitroethene derivative possessing a geminal phenylsulfonyl group, is both a powerful dienophile and a powerful Michael acceptor.^[4,5] It has not been possible to isolate the highly reactive nitroalkene 3, but methods for its generation and in situ use have been previously described. The ¹H NMR spectrum of **3**, taken immediately after generation, has confirmed its existence in solution.^[4]

Here we present a number of new reactions involving nitroalkene 3 as an intermediate, further mechanistic information on the simplest method of generating 3, and calculations rationalizing the reactivity of 3. The Diels-Alder cycloadducts formed from nitroalkene **3**, secondary α -nitrosulfones, have potential as substrates in S_{RN}1 reactions as was previously demonstrated.^[4]

RESULTS AND DISCUSSION

The nitroaldol route to nitroalkene 3

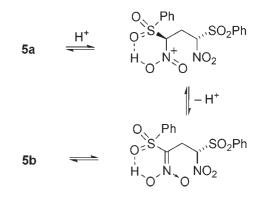

J. Phys. Org. Chem. 2009, 22 337-342

The simpler of two reported methods for obtaining nitroalkene 3 involves nitroaldol reaction of phenylsulfonylnitromethane (1) with formaldehyde followed by in situ dehydration of the resulting nitroaldol 2 (Scheme 1). To generate 3, one simply warms a solution of 1 containing formalin and acetic acid.

When generation of **3** is carried out in the absence of dienes, a gummy residue containing polar products not previously identified, is obtained. The polar products have now been identified as the bis(nitrosulfone) formaldehyde nitroaldol adducts 4a-b. Indeed, these are universal side products in reactions involving generation of nitroalkene 3 from 1 using excess formaldehyde: they are also formed in the presence of dienes. In a definitive run, the mono nitroaldol adduct 4a was present as a 60:40 mixture of diastereomers readily identifiable by the presence of two ¹H NMR signals (two dd) at δ 5.84 and 6.31, respectively, attributable to H₄ of the individual diastereomers. The presence of bis(nitroaldol) adduct 4b is predicated on the relative intensity of the complex NMR multiplets at δ 3.6–3.8 and 4.1–4.7. The δ 3.6–3.8 signal is attributable to C₃ protons in both **4a** and **4b**. The δ 4.1–4.7 signal is attributable to C₄ protons in both **4a** and **4b** and also C_5 protons of **4b**. The signal intensities in these regions were consistent with a 1:1 mixture of 4a and 4b under typical reaction conditions. The aryl signal intensity relative to the δ 3.6–3.8 and 4.1–4.7 signals was also consistent with a 1:1

Correspondence to: P. A. Wade, Chemistry Department, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA. E-mail: wadepa@drexel.edu

a P. A. Wade, J. K. Murray, A. Pipic, R. J. Arbaugh, A. Jeyarajasingam Chemistry Department, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA


Scheme 1. Formation of bis(nitrosulfones)

ratio of **4a** and **4b**. Presumably more than one stereoisomer of **4b** was present but this was not confirmed.

Two possible pathways for formation of 4a-b present themselves [paths (a) and (b)]. The anion of 1 could undergo Michael addition to nitroalkene 3 affording 5a-b subsequently converted to 4a-b via nitoaldol reactions with formaldehyde [path (a)]. Alternatively, the anion of nitroaldol 2 could add to 3 giving 4a directly followed by subsequent partial conversion to 4b [path (b)]. Approximately 10% of anions present would be derived from 1 ($pK_a^{[6]}$ 5.69) in solutions containing acetic acid $(pK_a^{[7]} 4.74)$. Nitroaldol **2** should have a similar thermodynamic acidity to 1 but would be very slow to deprotonate. Other primary nitrosulfones typically require several minutes for a significant concentration of anion to build up in the presence of hydroxide ion, far greater basicity than present here.^[8] As build-up of 2 has never been observed in these reactions, it seems unlikely that a significant concentration of the anion of 2 could form and react further to give **4a-b**. Therefore, the first alternative [path (a)] involving the anion of **1** is presumably the main one followed.

Treatment of crude **4a–b** with aqueous base followed by acidification gave the bis(nitrosulfone) **5a–b** which was isolated in 82% overall yield from **1**. Typically a 50:50 mixture of racemic and meso diastereomers **5a–b** was obtained. However, isomer **5a** crystallizes more readily than **5b** so that rapid acidification led to exclusive deposition of crystalline **5a** in some instances. The racemic diastereomer **5a** has been obtained pure whereas the meso diastereomer **5b** was obtained in mixtures containing **5a**.

The racemic diastereomer, isomer **5a**, is readily identifiable based on the homotopic methylene protons present on C_2 . A single signal (apparent triplet) was observed for the methylene protons. Conversely, these protons in the meso diastereomer **5b** are diastereotopic and exhibited separate signals. Similar

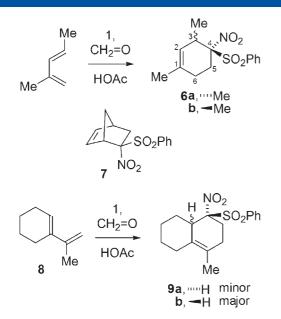
Scheme 2. Isomerization of 5a-b

analyses of isomer pairs have been reported as, for example, with isomers of 2,4-diphenylpentanedinitrile. $^{\left[9,10\right]}$

The racemic diastereomer **5a** interconverts with **5b** in the presence of acid. Trifluoroacetic acid catalyzed conversion of pure **5a** to an equilibrium 50:50 mixture of **5a–b**. When a sample of pure **5a** was subjected to preparative TLC, a 50:50 mixture of **5a–b** also resulted. These acid-catalyzed isomerizations are thought to proceed through the aci-nitro isomer (Scheme 2). Most nitro compounds do not protonate as readily as **5a–b**. A likely explanation is that protonation of the nitro group is enhanced by internal H-bonding with a sulfone O-atom. Deprotonation from carbon would then afford the planar aci-nitro isomer which could be protonated on either face. Similar internal H-bonding was used to explain the ready interconversion of isomers of 2,5-dinitro-1,6-hexanediol.^[11]

The formation of bis(nitrosulfone) **5a–b** from reaction of formaldehyde with nitrosulfone **1** prompted us to reinvestigate the synthesis of **1** from nitromethane and sodium benzenesulfinate.^[8] Variable amounts of bis(nitrosulfone) **5a–b** are formed as a co-crystallizable side product in this synthesis, but the preparation does not involve formaldehyde as a starting material. However, formaldehyde might be expected to form during the synthesis. Work-up involves acidification with mineral acid which could generate formaldehyde by Nef reaction of the residual nitromethane anion present. It seems, then, that condensation of **1** with a limited amount of formaldehyde might be responsible for formation of **5a–b** as the side product [Scheme 1, path (a)]. We now isolate **1** during its preparation by controlled acidification using saturated aqueous ammonium chloride. Under these conditions, **5a–b** does not form.

$$CH_{3}NO_{2} \xrightarrow{1) NaOMe} 1 + 5a-b$$


$$2) NaO_{2}SPh,$$

$$I_{2}$$

$$3) ag HCI$$

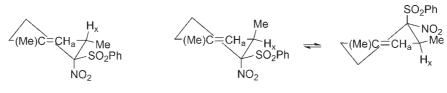
Generation of nitroalkene 3 in the presence of dienes

Generation of nitroalkene **3** in the presence of reactive dienes typically affords the Diels–Alder adduct. We have previously reported^[4] formation of cycloadducts from cyclopentadiene, spiro[2.4]hepta-4,6-diene, 2,3-dimethyl-1,3-butadiene, isoprene, and 1-methoxy-1,3-butadiene using the nitroaldol method to generate **3**. Here we report Diels–Alder reactions of **3** with (*E*)-2-methyl-1,3-pentadiene, 1-(1-methylethenyl)cyclohexene,

Scheme 3. Diels-Alder reactions

furan, and cyclooctatetraene (COT). The first two of these reactions proceeded in straightforward fashion. The third and fourth reactions took alternate pathways.

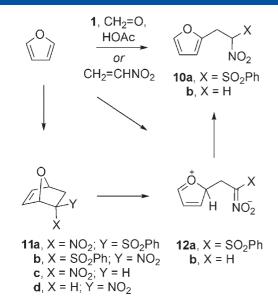
Reaction of nitroalkene **3** with (*E*)-2-methyl-1,3-pentadiene gave diastereomeric cycloadducts **6a–b** in 61% yield as an 80:20 isomeric mixture (Scheme 3). It was anticipated that the major isomer was the R^* , R^* diastereomer **6a**. This was by analogy with previously obtained results for cyclopentadiene.^[4] Only adduct **7** was obtained, requiring a transition state with *endo*-placement of the nitro group. Similar preferred *endo*-placement of the nitro group in reaction with (*E*)-2-methyl-1,3-pentadiene would afford the R^* , R^* diastereomer **6a** as the major product.

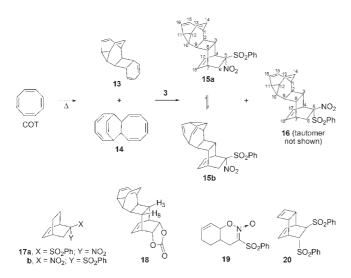

Verification of the major product identity was obtained by analysis of the ¹H NMR spectra of **6a** and **6b**. The $J_{a,x}$ coupling constants for **6a–b** provide clear evidence for formation of the R^* , R^* diastereomer **6a** as the major product (Scheme 4). The major isomer exhibited a small (1.5 Hz maximum) coupling constant while the minor isomer exhibited a 5.8 Hz coupling constant. From the Karplus equation, the 1.5 Hz coupling constant in the major product would be consistent with one heavily preferred conformation having a H_a, H_x dihedral angle in the range of 65–105°.

The R^* , R^* isomer should exist as a single conformation with a H_a, H_x. dihedral angle of approximately 75°. This conclusion assumes a C₁,C₄ dihedral angle of 15°, similar to the angle present in cyclohexene.^[12] Conformational preference can then be estimated in the following way. From the literature, there is a 0.97 kcal mol⁻¹ preference for pseudo-equatorial placement of the methyl group in 3-methylcyclohexene.^[13] Also known is the equatorial preference of the nitro group in 4-nitrocyclohexene $(-\Delta G^{\circ} = 0.25 \text{ kcal mol}^{-1})$.^[14] Equatorial preference for the phenylsulfonyl group was indirectly estimated because no conformational preference has been reported for sulfonyl groups at the 4-position of cyclohexene. The conformational preference has been determined for the phenylsulfonyl group on cyclohexane $(-\Delta G^{\circ} = 2.7 \text{ kcal mol}^{-1})$.^[15] Eliel^[12] has noted that $-\Delta G^{\circ}$ for equatorial preference at the 4-position of cyclohexenes is approximately half $-\Delta G^{\circ}$ in cyclohexanes (there is only a single 1,3-diaxial interaction). Halving the known value for the phenylsulfonyl group allows a straightforward estimation of conformational preference.^[16] Thus, placing the sulfonyl group equatorial at the 4-position and the methyl pseudo-equatorial at the 3-position should then be favored by roughly 2.1 kcal mol^{-1} $(0.97 + 1.35 - 0.25 = 2.1 \text{ kcal mol}^{-1})$ over the ring-flip conformation, a strong preference.

For the *R*^{*}, *S*^{*} diastereomer by contrast, two significantly populated conformations should exist. The difference in energy between these two conformations is estimated to be 0.2 kcal mol⁻¹ (0.97–1.35 + 0.25 = -0.2 kcal mol⁻¹). Contributions from the conformation with the pseudo-axial methyl group would result in a large coupling constant owing to the roughly 45° dihedral angle between H_a and H_x.

Reaction of nitroalkene **3** with 1-(1-methylethenyl)cyclohexene (**8**) gave diastereomeric cycloadducts **9a–b** in 64% yield as an 85:15 isomeric mixture. Based on the assumption of a preferred transition state with *endo*-placement of the nitro group, the major isomer of the reaction should be the R^* , S^* diastereomer **9b**. However, here it was not possible to confirm the assignment. The bridgehead proton of the major isomer did exhibit the higher-field chemical shift, consistent with structure **9b** where it is *cis* to the sulfone rather than the nitro group. A similar chemical shift pattern for the proton adjacent to the nitro and sulfone groups was observed for cycloadducts **6a** and **6b**.


Generation of nitroalkene 3 in the presence of furan, a well-recognized diene for Diels-Alder reactions, gave no detectable cycloadduct. Instead, the furan adduct 10a was obtained in 51% yield (Scheme 5). This adduct had limited stability, undergoing substantial decomposition within a day of preparation. Adduct 10a is formally the conjugate addition product of 3 and furan. A similar addition product, nitro compound **10b**, has been reported as the sole product from the reaction of nitroethene with furan.^[3] Under very similar conditions, the cycloadduct isomers 11c-d (mainly 11c) were also reported as the reaction products of nitroethene with furan.^[17] It was proposed that **10b** was formed from the cycloadduct 11c via the zwitterion 12b.^[3] The analogous zwitterion 12a would be expected to be more stable than 12b owing to the second W-group. Thus, formation of cycloadduct 11a, ring-opening to the zwitterion 12a, and


6a major: *R*, R** J_{a,x} < 1.5 Hz

Scheme 4. Conformations of cycloadducts 6a and 6b

6b minor: *R**, *S** *J*_{a,x} = 5.3 Hz

Scheme 5. Reactions of furan

Scheme 6. COT cycloadducts and structurally related compounds

tautomerization is a likely pathway for the formation of adduct **10a**. In the present case, it is not possible to rule out an alternate route: conjugate addition of furan to the highly reactive double bond of **3** to give **12a** directly. Either route would involve tautomerization of **12a** to afford adduct **10a**.

Reaction of COT, a less reactive Diels–Alder diene component, was also investigated with nitroalkene **3** (Scheme 6). Generation of **3** from **1**, formalin, and acetic acid under moderate heating in the presence of COT provided a very low yield of cycloadduct, two materials in a 90:10 ratio being formed. From NMR spectra, the major cycloadduct consisted of two COT units and one dienophile unit. It was thought that COT might have dimerized prior to reaction with **3** to give the known^[18] dimer **13** and that dimer **13** subsequently reacted with **3** to give the observed cycloadduct. To confirm this conjecture, COT was dimerized at 100°C by the method of Schröder^[18] and the dimeric material, used as a mixture of **13** and **14**, was then subjected to cycloadduct obtained from monomeric COT was now obtained.

As before, a major material and a minor material were present in a 90:10 ratio: these proved to be isomers. From the spectra of the major isomer, clear evidence for a semibullvalene structure was apparent. Proton absorptions at δ 3.7–4.0 were assigned to the four equilibrating cyclopropyl/alkenyl protons. Of the several possible isomeric structures, only the equilibrating valence bond tautomers 15a-b are consistent with the spectral data. The structure of COT dimer 13 has been well established, although assignment of the trans-stereochemistry relies on two indirect observations. Moore^[19] originally proposed the *trans*-structure on the basis of the inability of dimer 13 to undergo an intramolecular Diels-Alder reaction. Crystallographic data presented by Stezowski^[20] on cycloadduct 18, obtained^[21] from reaction of COT with ethylidene carbonate at elevated temperature, require trans-COT dimer 13 as the precursor. The COT dimer 14 is known to be unreactive in typical Diels-Alder reactions.[18]

The ¹H NMR spectrum of the major isomer **15** exhibited signals for the H₁₇,H₁₈ ethenyl bridge protons similar to the signals for corresponding protons in the 1,3-cyclohexadiene adduct **17a**^[5] (δ 6.1 vs. 6.0 and δ 6.44 vs. 6.36, respectively). Proton H₃ in **15** (δ 3.07) is in resonance at substantially *lower* field than the corresponding protons H₃,H₈ (δ 2.2) in adduct **18** and in reasonable agreement with the corresponding proton in adduct **17a** (δ 2.42). This presumably arises from the proximity of H₃ to the phenylsulfonyl group at C₅. The *endo*-placement of the nitro group in **17a** was firmly based on the observation that **17a** as opposed to **17b** is produced from [3,3]-sigmatropic rearrangement of nitronic ester **19**.^[5] The signal attributed to H₄ in isomer **15** (δ 3.68) also exhibited a similar chemical shift to the corresponding signal for cyclohexadiene adduct **17a** (δ 3.6).

Assignment of the minor isomer **16** is based on comparison to cyclohexadiene adduct **17b**. The ¹H NMR signals for the H₁₇,H₁₈ ethenyl bridge protons have similar chemical shifts to the signals of corresponding protons in the adduct **17b** (δ 6.35 *vs*. 6.28 and δ 6.61 *vs*. 6.47, respectively) and are at lower field than the H₁₇,H₁₈ signals of major isomer **15** or the corresponding signals of adduct **17a**. The signal attributed to H₄ in isomer **16** (δ 3.4) also exhibited a similar chemical shift to the corresponding signal for adduct **17b** (δ 3.27).

De Lucchi and coworkers^[22] have reported that (E)-1,2-bis(phenylsulfonyl)ethene, undergoes reaction with COT monomer to produce cycloadduct 20 in competition with cycloaddition to the COT dimer. Although less powerfully substituted (nitro is a stronger W-group than phenylsulfonyl), (E)-1,2-bis(phenylsulfonyl)ethene was more reactive with COT than nitroalkene 3. However, (Z)-1,2-bis(phenylsulfonyl)ethene behaved similar to nitroalkene 3 failing to react with monomeric COT and giving uncharacterized cycloadducts of COT dimer. Based on these observations, it would seem that 1,1-disubstitution of W-groups in the dienophile may be generally less efficient than trans-1,2 disubstitution at activating Diels-Alder cycloaddition reactions. This would be expected if the LUMO of the 1,2-disubstituted dienophile were lower in energy than the LUMO of the corresponding 1,1-disubstituted isomer. Semiempirical calculations at the PM3 level were performed on nitroalkene 3 and the known^[23] trans-1,2disubstituted isomer 21 with the result that, indeed, the 1,2-isomer had the lower LUMO energy. The calculated LUMO energy levels for 3 and 21 were -1.22 eV and -1.68 eV, respectively. Thus, 21 should be a more powerful dienophile than 3. Conversely, 1,1-disubstituted dienophiles such as nitroalkene **3** are significantly more regioselective than 1,2-disubstituted dienophiles.

EXPERIMENTAL

General

Commercially available reagents were used without further purification unless otherwise noted. Tetrahydrofuran was distilled from sodium benzophenone ketyl. NMR spectra were recorded on a Varian 500 Innova spectrometer at 500 MHz (¹H NMR) or 126 MHz (13 C NMR). The three aryl absorptions for PhSO₂ are recorded as apparent d, t and t, respectively, although the AA'MXX' pattern is non-first order, and does show additional complexity. Mass spectra were determined on a VG Analytical 70SE magnetic sector instrument. Reactions were routinely run under a nitrogen atmosphere. 1-(1-Methylethenyl)cylohexene was prepared from 1-acetylcyclohexene by a published procedure^[24] except that THF at room temperature was employed rather than refluxing ether. Phenylsulfonylnitromethane (1) was prepared by the published procedure,^[8] except that acidification during work-up was carried out first with saturated ammonium chloride to pH 5 followed by aqueous 5% HCl to pH 1-3. PM3 Semiempirical calculations were performed using Hyperchem release 7.1.

General procedure—generation of (1-nitroethenyl) sulfonylbenzene 3 in the presence of dienes

A mixture of diene (4.7 mmol), phenylsulfonylnitromethane (2.83 g, 14 mmol), formalin (3.81 g of a 37% solution, 47 mmol of CH_2 ==O), acetic acid (2.8 g, 47 mmol), and THF (20 ml) was heated at 40–50°C for 16 h. Volatiles were removed at reduced pressure and the residue partitioned between water (50 ml) and CH_2Cl_2 (extraction with three 40-mL portions). The combined extracts were washed with water (50 ml), dried over anhydrous Na₂SO₄, and concentrated at reduced pressure. Flash chromatography (various eluents) gave purified product followed by more polar side products **4a–b** which were not routinely isolated. All reagent quantities were scaled according to the amount of diene employed.

Preparation of COT dimers 13 and 14

A 2.01 g (19 mmol) portion of freshly distilled COT was heated in a closed N₂-flushed flask at 95–105°C for 69 h. Volatiles were removed from the crude product at reduced pressure (20–100°C, 15 mm Hg). The residue was subjected to Kugelrohr distillation to separate tetramers from the dimers. A 23% yield (0.45 g, 2.2 mmol) of distillate (bp 110–120°C, 0.09 mm Hg) consisting of a 1:1 mixture (based on the ¹H NMR spectrum) of **13** and **14** was obtained.

New products formed from nitroalkene 3

(2,4-Dimethyl-1-nitro-3-cyclohexenen-1-yl)sulfonylbenzene 6

From 0.5 g (6.1 mmol) of (*E*)-2-methyl-1,3-pentadiene was obtained 1.09 g (3.7 mmol, 61% yield) of an oil (elution with

50:50 hexanes/CH₂Cl₂). This purified product was an 80:20 mixture of **6a** and **6b** (found: MH⁺, 296.0958; C₁₄H₁₇NO₄S+H requires 296.0957); ν_{max} (film)/cm⁻¹ 1550 (NO₂), 1331 (NO₂, SO₂), 1146 (SO₂) cm⁻¹. ¹³C NMR (CDCl₃) δ 135.1, 134.9, 134.6, 133.5, 132.7, 131, 130.3, 129.2, 128.9, 123.6, 121.5, 110.6 (CNO₂, **6b**), 108.9 (CNO₂, **6a**), 34.3, 29.7, 27.9, 27.4, 25.3, 22.7, 22.6, 21.6 18.9, 18.3.

A portion of the mixture was enriched in the separate isomers by cutting the single preparative TLC band (eluted with 60:40 CH₂Cl₂/hexanes) into three fractions. The minor isomer was somewhat enriched in the top third fraction (67:33, **6a/6b**) and the major isomer was enriched in the bottom third fraction (90:10, **6a/6b**). ¹H NMR (CDCl₃) obtained for two mixtures of different concentration δ 7.90 (d, 2H of **6a**, J = 7.3 Hz), 7.83 (d, 2H of **6b**, J = 7.3 Hz), 7.74 (m, 1H of **6a–b**), 7.59 (m, 2H of **6a–b**), 5.36 (d, 1H of **6b**, J = 5.8 Hz, H_A), 5.25 (m, 1H of **6a**, all J < 1.5 Hz, H_A), 3.67 (quint, 1H of **6b**, J = 6.8 Hz, H_X), 3.18 (broad s, 1H of **6a**, H_X), 2.55–2.7 (m), 2.3–2.45 (m), and 2.05–2.25 (m, 4H total), 1.69 (s, 3H of **6a**), 1.57 (s, 3H of **6b**), 1.44 (d, 3H of **6b**, J = 6.8 Hz), and 1.15 (d, 3H of **6a**, J = 6.8 Hz).

1,2,3,4,6,7,8,8a-Octahydro-5-methyl-8-nitro-8- (phenylsulfonyl) naphthalene **9**

From 0.68 g (5.6 mmol) of 1-(1-methylethenyl)cyclohexene was obtained 1.19 g (3.6 mmol, 64% yield) of a semi-solid (50:50 hexanes/CH₂Cl₂ eluent). This purified product consisted of an 85:15 mixture of 9b and 9a, respectively. Iterative flash and thin-layer chromatography (elution with 50:50 hexanes/CH₂Cl₂) effected separation of the two isomers. Major isomer 9b was the less mobile fraction and was recrystallized three times from benzene-hexanes (found: MH⁺, 336.1264; C₁₇H₂₁NO₄S+H requires 336.1270); mp 106–108°C; ν_{max} (KBr)/cm⁻¹ 1553 (NO₂), 1330 (NO₂, SO₂), 1151 (SO₂); ¹H NMR (CDCl₃) δ 7.88 (d, 2H, J=7.8 Hz), 7.73 (t, 1H, J=7.3 Hz), 7.59 (t, 2H, J=7.3 Hz), 2.7–2.8 (m, 2H), 2.65–2.7 (m, 1H), 2.61 (m, 1H), 2.38 (dt, 1H, J=8.7, 14.2 Hz), 2.23 (dd, 1H, J = 8.1, 17.6 Hz), 1.79 (m, 2H), 1.69 (s, 3H), 1.45–1.6 (m, 2H), 1.41 (qt, 1H, J=3.9, 13.2 Hz), 1.2–1.28 (m, 2H); ¹³C NMR (CDCl₃) δ 134.8, 134.6, 130.9, 128.8, 128.6, 123.3, 109.6 (CNO₂), 43.0, 31.8, 31.2, 29.6, 27.8, 26.5, 23.8, 18.2.

Minor isomer **9a** was the more mobile fraction and, after three recrystallizations from benzene-hexanes, was obtained as a solid (found: MH⁺, 336.1263; C₁₇H₂₁NO₄S+H requires 336.1270); mp 178–81°C; ν_{max} (KBr)/cm⁻¹ 1553 (NO₂), 1323 (NO₂, SO₂), 1147 (SO₂); ¹H NMR (CDCl₃) δ 7.81 (d, 2H, J=7.8 Hz), 7.72 (t, 1H, J= 7.8 Hz), 7.56 (t, 2H, J= 7.8 Hz), 3.52 (d, 1H, J= 11.7 Hz), 2.71 (d, 1H, J= 11.7 Hz), 2.63 (dd, 1H, J= 1.5, 12.8 Hz), 2.51 (m, 2H), 2.12 (m, 2H), 1.95 (d, 1H, J= 13.7 Hz), 1.86 (dd, 1H, J= 1.5, 12.2 Hz), 1.70 (m, 2H), 1.53 (s) overlapping 1.2–1.6 (m) [6H total]; ¹³C NMR (CDCl₃) δ 135.1, 133.3, 131.6, 130.2, 129.2, 121.5, 110.5 (CNO₂), 43.6, 32.4, 31.7, 28.8, 28.4, 26.8, 23.0, 18.0.

2-[2-Nitro-2-(phenylsulfonyl)ethyl]furan 10a

The general procedure was followed but the reaction temperature was kept at 20-25° c. A 0.41 g (6 mmol) portion of furan was used as diene. Rapidly performed flash chromatography (CH₂Cl₂ followed by 98:2 CH₂Cl₂/MeOH eluents) gave 0.86 g (3.1 mmol, 51% yield) of pure **10a** as a solid having limited stability (found: MNa⁺, 304.0252; C₁₂H₁₁NO₅S+Na requires 304.0256); ν_{max} (KBr)/ cm⁻¹ 1561 (NO₂), 1339 (NO₂, SO₂), 1151 (SO₂); ¹H NMR (CDCl₃) δ 7.92 (d, 2H, J=7.8 Hz), 7.80 (t, 1H, J=7.6 Hz), 7.65 (t, 2H,

J = 7.8 Hz, 7.31 (m, 1H), 6.28 (dd, 1H, J = 2.9, 2.0 Hz), 6.16 (d, 1H, J = 2.9 Hz), 5.81 (dd, 1H, J = 9.8, 3.9 Hz, X portion of ABX), 3.68 (dd, J = 3.9, 15.6 Hz) on 3.65 (dd, J = 9.8, 15.6 Hz, total 2H, AB portion of ABX); ¹³C NMR (CDCl₃) δ 145.9, 143.0, 135.6, 134.1, 129.9, 129.6, 110.8, 109.1, 100.1, 26.9.

COT dimer cycloadducts 15 and 16

The crude product was obtained from a mixture of COT dimers (0.13 g, 0.62 mmol) by the general procedure (elution with 50:50 hexanes/CH₂Cl₂ followed by CH₂Cl₂). COT dimeric material (70 mg, 54% recovery, 1:7 mixture of 13 and 14, respectively) was obtained from the least polar chromatography fractions followed by cycloadduct (0.12 g, 0.29 mmol, 47% yield, 96% conversion) and side products 4a-b. The cycloadduct was a 90:10 mixture of two isomers that overlapped on a TLC plate. Preparative TLC (three fractions were taken) provided pure 15 and an enriched sample of **16**. The fastest moving fraction was the major isomer **15**: it was recrystallized from ethanol, mp 210–212°C. ν_{max} (KBr): 1544 (NO₂), 1328 (NO₂, SO₂), 1150 (SO₂) cm⁻¹. ¹H NMR (CDCl₃) δ 7.81 (d, 2H, J=7.8 Hz), 7.72 (t, 1H, J=7.4 Hz), 7.57 (t, 2H, J = 7.8 Hz), 6.44 (t, 1H, J = 7.3 Hz, H₁₈), 6.1 (t, 1H, J = 7.3 Hz, H₁₇), 6.03 (t, 1H, J = 9.6 Hz, H_{13 or 16}), 5.69 (t, 1H, J = 9.8 Hz, H_{13 or 16}), 3.68 (dd, J = 3.6, 6.1 Hz, H₄) overlapping 3.35–4.05 (m, H_{11,12,14,15}, 5H total), 3.07 (quint, 1H, J = 4.4 Hz, H₃), 2.91 (m, 1H, H₇), 2.76 (dd, 1H, J = 3.9, 15.1 Hz, H₆), 2.44 (dd, J = 1.5, 15.1 Hz, H₆) overlapping 2.45–2.5 (m, H₈, total 2H), 2.17 (m, 2H, H_{2.9}), and 1.9 (m, 2H, H_{1.10}); ¹³C NMR (CDCl₃) δ 136.5, 135.0, 134.4, 130.1, 129.4, 129.1, 126.7, 126.5, 111.6 (C₅), 41.5, 39.6, 36.8, 36.2, 35.4, 33.2, 29.7, 27.9, 27.5. Anal. Calcd. for C₂₄H₂₃NO₄S: C 68.39, H 5.50, N 3.32. Found: C 68.25, H 5.49, N 3.22.

The slowest moving fraction from preparative TLC was a partially purified mixture, containing 76% of the minor isomer **16** with 24% of the major isomer **15** remaining. ¹H NMR (CDCl₃) bands attributable to the minor isomer δ 7.84 (d, 2H, J = 7.8 Hz), 7.74 (t, 1H, J = 7.3 Hz), 7.60 (t, 2H, J = 7.8 Hz), 6.61 (t, 1H, J = 7.3 Hz, H₁₈), 6.35 (t, 1H, J = 7.3 Hz, H₁₇), 5.84 (t, 1H, J = 9.3 Hz, H₁₃ or 16), 5.64 (t, 1H, J = 9.7 Hz, H₁₃ or 16), 3.3–4.1, (m, 4H, H_{11,12,14,15}), 3.29 (dd, 1H, J = 3.4, 10.3 Hz, H₄), 2.93 (m, 1H, H₇), 2.79 (dd, 1H, J = 2.4, 15.6 Hz, H₆), 2.60 (dd, 1H, J = 3.4, 15.6 Hz, H₆), 2.25 (m, 1H), 2.07 (m, 2H), and 1.88 (m, 2H).

2,4-Dinitro-2,4-bis(phenylsulfonyl)butan-1-ol **4a**, 2,4-dinitro-2, 4-bis(phenylsulfonyl)-pentane-1,5-diol **4b**, and 1,1'-[(1,3-dinitro-1,3-propanediyl)bis(sulfonyl)]bis(benzene) **5a-b**

A mixture of phenylsulfonylnitromethane (1.0 g, 5 mmol), formalin (4.07 g of a 37% solution, 50 mmol of CH₂==O), acetic acid (3 g, 50 mmol), and DMSO (50 ml) was heated at 35–40°C for 24 h. The crude reaction solution was added to ice water (500 ml) and the resultant was extracted with CH₂Cl₂ (three 100 ml portions). The combined extracts were washed with water (three 75 ml portions), dried over anhydrous Na₂SO₄, and concentrated at reduced pressure. The gummy solid crude product (1.12 g) consisted mainly of **4a–b**. ν_{max} (film) 3250–3600 (broad, OH), 1563 (NO₂), 1338 (NO₂, SO₂), 1155 (SO₂) cm⁻¹. ¹H NMR (CDCl₃) δ 7.75–8 (m, 3H all aryl), 7.55–7.7 (m, 2H all aryl), 6.31 (dd, 1H 1st isomer of **4a**, J = 2.9, 6.8 Hz), 5.84 (dd, 1H 2nd isomer of **4a**, J = 2.9, 7.8 Hz), 4.2–4.7 (m, 2H of **4a–b**, all CH₂ between CNO₂), 3.6–3.8 (m, 2H of **4a** and 4H of **4b**, CH₂O).

The crude **4a–b** (1.12 g) was taken up in CH₂Cl₂ (125 ml) and was extracted into aqueous 5% NaOH (150 ml). The separated aqueous layer was acidified to pH 2 with saturated aqueous ammonium chloride followed by 10% aqueous HCl. The product was extracted with CH₂Cl₂ (three 50 ml portions). The combined organic layers were washed with water (20 ml), dried over anhydrous Na₂SO₄, and concentrated at reduced pressure. The resulting 0.86 g (82% yield) portion of off-white solids consisted of a 1:1 mixture of **5a** and **5b** in definitive runs, although considerable variation in the isomer ratio was noted in other runs. ¹H NMR (CDCl₃) δ 7.9–7.95 (m, 4H of **5a** and **5b**), 7.83 (t, 2H of **5a** and **5b**, J = 7.8 Hz), 7.67 (t, 4H of **5a** and **5b**, J = 7.8 Hz), 5.84 (dd, 2H of **5b**, J = 6.3, 7.3 Hz), 5.78 (t, 2H of **5a**, J = 6.8 Hz), 3.33 (dt, 1H of **5b**, J = 7.3, 16.1 Hz).

The less soluble isomer could be readily crystallized from an ethanol mixture of the isomers to afford pure **5a** as a white solid: mp 165–66°C (lit^[8] mp 165–66°C). ¹H NMR (CDCl₃) δ 7.93 (d, 4H, J = 7.8 Hz), 7.83 (t, 2H, J = 7.4 Hz), 7.67 (t, 4H, J = 7.4 Hz), 5.77 (t, 2H, J = 6.8 Hz).

Thin layer chromatography (CH_2CI_2 eluent) of pure **5a** led to formation of a 1:1 mixture of **5a** and **5b**. Stirring a CH_2CI_2 solution of **5a** containing 1 molar equivalent of trifluoroacetic acid for 4 h led to formation of a 1:1 mixture of **5a** and **5b**.

REFERENCES

- For a recent example, see: A. V. Baranovsky, D. A. Bolibrukh, J. R. Bull, Eur. J. Org. Chem. 2007, 445–454.
- [2] For a recent example, see: Y. Chi, L. Guo, N. A. Kopf, S. H. Gellman, J. Am. Chem. Soc. 2008, 130, 5608–5609.
- [3] D. Ranganathan, C. B. Rao, S. Ranganathan, A. K. Mehrotra, R. Iyengar, J. Org. Chem. **1980**, 45, 1185–1189.
- [4] P. A. Wade, J. K. Murray, S. Shah-Patel, P. J. Carroll, *Tetrahedron Lett.* 2002, 43, 2585–2588.
- [5] P. A. Wade, J. K. Murray, S. Shah-Patel, H. T. Le, Chem. Commun. 2002, 1090–1091.
- [6] F. G. Bordwell, J. E. Bartmess, J. Org. Chem. 1978, 43, 3101-3107.
- [7] L. G. Wade, Organic Chemistry, (6th edn), Pearson Prentice Hall, Upper Saddle River, NJ, 2006, 941.
- [8] P. A. Wade, H. R. Hinney, N. V. Amin, P. D. Vail, S. D. Morrow, S. A. Hardinger, M. S. Saft, J. Org. Chem. 1981, 46, 765–770.
- [9] T. Harada, A. Karasawa, A. Oku, J. Org. Chem. 1986, 51, 842-846.
- [10] 1,3-Diphenyl-1,3-propanediol provides another example: R. Todesco, D. van Bockstaele, J. Gelan, H. Martens, J. Put, J. Org. Chem. 1983, 48, 4963–4968.
- [11] H. Feuer, A. T. Nielsen, *Tetrahedron* **1963**, *19*, 65–75.
- [12] E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994, 726–727 and references cited therein.
- [13] Y. Senda, S. Imaizumi, Tetrahedron 1974, 30, 3813-3815.
- [14] N. S. Zefirov, V. N. Chekulaeva, A. I. Belozerov, *Zh. Org. Khim.* **1969**, *5*, 630–637.
- [15] E. Juaristi, V. Labastida, S. Antunez, J. Org. Chem. 2000, 65, 969–973.
- [16] This estimate may be somewhat high as a number of known actual values, including the value for nitro, are less than half. Any $-\Delta G^{\circ}$ value for phenylsulfonyl of 0.9–1.35 kcal mol⁻¹ would give a similar qualitative result.
- [17] T. A. Eggelte, H. De Koning, H. O. Huisman, *Heterocycles* **1976**, *4*, 19–22.
- [18] G. Schroeder, Chem. Ber. **1964**, 97, 3131–3139.
- [19] H. W. Moore, J. Am. Chem. Soc. **1964**, 86, 3398–3399.
- [20] J. J. Stezowski, Cryst. Struct. Commun. 1975, 4, 329-332.
- [21] J. Daub, U. Erhardt, V. Trautz, Chem. Ber. 1976, 109, 2197-2207.
- [22] O. De Lucchi, V. Luchini, L. Pasquato, G. Modena, J. Org. Chem. 1984, 49, 596–604.
- [23] N. Ono, A. Kamimura, A. Kaji, J. Org. Chem. 1986, 51, 2139–2142.
- [24] L. D. Quin, B. G. Marsi, Heteroat. Chem. 1990, 1, 93-107.